
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f M

ed
ic

in
e 

an
d 

H
ea

lth
 S

ci
en

ce
s 

 
Ka

vl
i I

ns
tit

ut
e 

fo
r S

ys
te

m
s 

N
eu

ro
sc

ie
nc

e

M
as

te
r’s

 th
es

is

Boon Linn, Choo

Spatial representation of a virtual
environment in a deep neural network

Master’s thesis in Master of Science in Neuroscience (MSNEUR)

Supervisor: Prof. Raphael Kaplan

June 2020





 
 

Boon Linn, Choo 

 

Spatial representation of a virtual 

environment in a deep neural network 
 

 

 

 

 

 

 

 

 

 

 

 

Master’s thesis in Master of Science in Neuroscience (MSNEUR) 

Principal Investigator: Prof. Raphael Kaplan 

Subject Supervisor: Mr. Markus Frey 

June 2020 

 

Norwegian University of Science and Technology 

Faculty of Medicine and Health Sciences 

Kavli Institute for Systems Neuroscience 

 

 

 

 

 



iv 
 

(This page was intentionally left blank)  



v 
 

 
 

 
 

 

Abstract 
 

In recent decades, scientists have made great advances in characterizing the 

neurobiological foundations of spatial cognition. Notably, neurobiological findings have not 

been limited to active exploration of the physical world. Neuroscientists have more recently 

started to use virtual reality (VR) approaches to develop more detailed accounts of spatial 

coding in the brain, but the specific neural computations guiding spatial navigation remain 

unclear. Attempting to uncover these neural computations, we built a deep convolutional 

neural network (CNN) to investigate how a simulated agent learns a virtual environment. 

We found that the CNN learned the layout of the virtual environment mainly via unit 

responses that resembled previously discovered spatially modulated hippocampal neural 

signals, as well as novel ‘corner’ units. These results give a hint of the importance and 

efficiency of spatially modulated cells in evaluating physical environments in both artificial 

navigating agents and exploring organisms. 
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Sammendrag 
 

De siste tiårene har forskere gjort store framskritt i å karakterisere det nevrobiologiske 

fundamentet for spatial kognisjon. Særskilt har nevrobiologiske funn ikke vært begrenset 

til aktiv utforskning av den fysiske omverden. Nevroforskere har i det siste begynt å ta i 

bruk virtuell virkelighet (VR) for å redegjøre mer detaljert om spatial koding i hjernen, 

men det er fremdeles uklart hvilke spesifikke nevrale beregninger som veileder spatial 

navigasjon. I et forsøk på å avdekke slike nevrale beregninger bygde vi et 

konvolusjonsbasert (convolutional) nevralt nettverk (CNN) for å undersøke hvordan en 

simulert agent lærer virtuelle omgivelser. Vi fant at vårt CNN lærte de virtuelle 

omgivelsene gjennom enhetsbaserte responser som lignet på tidligere oppdagede 

stedsmodulerte nevrale signaler i hippocampus, samt nye 'hjørneenheter'. Disse 

resultatene kan være hint om viktigheten og effektiviteten av stedsmodulerte celler i å 

evaluere fysiske omgivelser både i simulerte navigerende agenter, og i utforskende 

organismer. 
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Chapter 1 : Introduction 
 

1.1 Project’s Rationale and Approach 
 

We often have the chance to travel outside familiar environments like for international 

travel or visiting a new shopping mall. Despite the inherent challenges posed by 

environmental novelty, we are typically still able to conduct intuitive exploration, where 

we can find our way and generalize locations within a newly perceived environment quite 

easily. We can even travel to targets precisely without familiar landmarks in a considerable 

distance (1) based on internal judgement. This judgement is known as path integration, 

our innate ability to use idiothetic (self-motion) cues such as angular movements and 

distances travelled to compute the vector between personal location and trajectory 

positions (2, 3). In contrast, mobile robots normally require heavy pre-training experience 

that requires high similarity with encounters during testing. 

More than 20 decades have passed since the first invention of steam-powered railway 

trains, yet we are still incapable of realizing the fantasy of safety-assured-driverless-

vehicles. Autonomous robotic navigation is mostly considered a failure when compared to 

animals’ self-locating ability. Taking the Google Street View as an example of an artificial 

navigating agent, it is unable to calculate distance travelled without GPS tracking or the 

ability to label a building and street automatically without help from Google engineers. To 

this end, researchers are using deep learning to help resolve this issue. Research teams 

are developing either simulated or physically-existing navigating robots that can at least 

navigate autonomously in a new environment after being trained in different dynamic 

environments (4, 5). These robots mainly function on the basis of large training sets of 

labelled images (6) to learn image identification, image classification, object detection, 

scene understanding (semantic segmentation), and specific object recognition (7). In spite 

of these initial successes, most studies have failed to relate navigating computations in 

robots with electrophysiological findings in freely moving animals. 

To reduce the gap between studies in animals and robots, we first compare the remarkable 

spatial cognition capabilities of animals to artificial agents. Next, we provide insights into 

the spatial recognition and navigation components of artificial agents, and use these new 

findings to uncover novel spatial computations. We then provide evidence how artificial 

agents could be trained to learn on virtual environments in an efficient manner almost 

similar to animals. We hypothesize that training a deep convolutional neural network (CNN) 

to learn locations in a complex virtual environment will afford biologically plausible spatial 

learning in a simulated agent. 
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1.2 Background: Neurobiology of Spatial Cognition 

 

It was first suggested by Charles Darwin that instincts have led us to find directions in our 

daily lives (8). The concept of an internal mental map used for navigation was then 

suggested by a geographer, Gulliver (1908) (9) in an attempt of trying to make a map 

that is comfortably readable by everyone (10). One of the earliest spatial navigation 

studies was introduced by Watson and Lashley (1915), where they investigated birds’ long 

distance homing and short distance nest-locating abilities (9). They however, failed to 

explain the underlying spatial cognition related to these behaviours (9). One of the most 

influential theories on spatial cognition was of the cognitive map proposed by Edward C. 

Tolman in 1948, which was devised following his experiment involving rats exploring a 

maze (11). This theory suggested that behaviour is guided by mental events beyond 

stimulus-response learning (12). For example, the concept of stimulus-response learning 

does not sufficiently explain the use of novel shortcuts during navigation (13), as taking a 

novel shortcut requires the ability to build up an internal map of an environment. 

Consequently, Tolman suggested that these cognitive map-like representations are 

necessary to help acquire, store, and recall memories (12). Uncovering specific brain 

regions related to memory, Brenda Milner studied an epilepsy patient, H.M., with surgical 

resections in the hippocampus and neighboring medial temporal lobe structures that failed 

to form new memories and remember everyday experiences that occurred after their 

surgery (13-15). Supporting a potential role for the hippocampus in forming cognitive 

maps, O'Keefe and Dostrovsky found that there were selective hippocampal “place” cells 

that increased in firing rate when rats explored a particular location within an environment 

(16). Inspired by these findings, O’Keefe and Nadel (1978), hypothesized that these 

hippocampal cognitive maps of physical environments could facilitate mnemonic function 

more generally (11).  

Since then, the hippocampus and surrounding brain areas received more attention from 

neuroscientists, which led to the discovery of additional types of spatial cells.  A summary 

of these spatial and directional cells are listed in the table below (Table 1.1 Summary of 

Spatial Cells and Features). 

 

Spatial Cells Name Features 

Hippocampal Place 

Cells 

• Type: Pyramidal Cells, Granule Cells (17) 

• Predominant Brain Area(s): Hippocampus (CA1, CA3, 

Dentate Gyrus) (17, 18)  

• Environment-specific representations. Place cells fire at 

specific locations in a given environment, and remap in 

another environment. This suggests that the cognitive 

map is dynamic, can be continuously updated and 

remapped to represent one’s location in a changing 

environment, and may reflect stored experience in the 

hippocampal network (17) 

• May be co-modulated by grid cells and head-direction 

cells (17) 

Head-Direction Cells • Type: (putative, excitatory) Pyramidal Cells (19-21), 

Martinotti Cells (22) 
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• Predominant Brain Area(s): Anterior Dorsal Thalamus 

(predict future head direction), Dorsal Presubiculum 

(postsubiculum), Retrosplenial Cortex, MEC (23), lateral 

mammillary nuclei and lateral dorsal thalamus, striatum 

• Activate when an animal is facing a particular direction 

regardless of spatial location. Angular distance between 

the cells' preferred directions is conserved across 

environments (23) 

• Mature prior to place cells and grid cells, and do not 

depend on grid cells on directional selectivity, 

suggesting an upstream expression of spatial maps 

(23) 

Grid Cells • Type: Pyramidal Cells, and Stellate Cells in Layer II of 

MEC (17) 

• Predominant Brain Area(s): Medial Entorhinal Cortex 

(MEC) (17), may also present in neocortex (24) 

• Grid cells possess periodic hexagonally spaced firing 

fields that form a regular triangular grid across the 

environment. They provide a measure of distance and 

boundaries for the entorhinal–hippocampal spatial map, 

and affected by path integration (direction [angular] 

and speed [linear] information required to transform 

the representation during (self-)movement by yet-to-

be-determined-specialized-cells) (17). Grid fields that 

appear in the first exploration of a new environment 

persist despite subsequent changes in landmarks, with 

a tendency to rotate along with external reference 

points (25), hinting of a continuous attractor network 

mechanism (17). Grid cells cluster into modules of cells 

with similar grid scale, grid orientation and grid 

asymmetry but different grid phase (25) that remains 

constant across environment (17), hinting of oscillatory 

interference models (24) 

• May be modulated by head-direction cells and dentate 

gyrus (17), and drive the formation of place cells (26) 

Conjunctive (Grid) 

Cells 

• Type: Pyramidal cells in Layer III of MEC (27) 

• Predominant Brain Area(s): Layer III of Medial 

Entorhinal Cortex (MEC)  (27) 

• Very similar to grid cells and also fire in the pattern of a 

regular triangular pattern. Modulated by head-direction 

such that the individual cell will only fire if the head is 

pointed towards the cell’s preferred direction (27) 

Border/Boundary 

(Vector) Cells 

• Type: Stellate Cells (99%), Pyramidal Cells (1%) (28) 

• Predominant Brain Area(s): (All layers of) Medial 

Entorhinal Cortex (MEC), Parasubiculum (29, 30), 

subiculum (31) 

• Sparsely exist with just less than 10% of the local cell 

population. Border cells encode one’s position in 

relation to the borders of the egocentric environment, 
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and fire when one is near the edge of the local 

environment (29, 32), that is, they fire at specific 

distances from specifically oriented environmental 

boundaries (33), providing connecting information of 

egocentric (self-to-object) and allocentric (object-to-

object) boundary (34). 

• Potentially work with head-direction cells and grid cells 

to plan trajectories and anchoring grid fields and place 

fields to a geometric reference frame (29), whereas 

border and grid cells associations are suggested to 

minimize the accumulated grid cells' error (35) 

Object Cells • Type: Principal cells of the entorhinal cortex (36) 

(Pyramidal, Stellate) 

• Predominant Brain Area(s): Lateral Entorhinal Cortex 

(LEC) and associated areas (33) 

• Object cells possess object selectivity (processing what 

instead of where the object is (37)), that is, respond 

only when the animal is at the vicinity of discrete 

objects (36) and not when it perceives it from a 

distance (33) 

• A sub-type of object cells are so-called object-trace 

cells, discovered by Tsao et al. (2013) that respond 

corresponding to where an object had been on a 

preceding trial (36, 38) 

Landmark-Vector 

Cells 

• Were initially thought to be place cells by Muller and 

Kubie in 1987 (39), but were later called landmark-

vector cells by Deshmukh and Knierim in 2013 (31). 

These cells match the evidence of alternative class of 

place cells proposed by Rivard et al. in 2004, who 

named them barrier cells (40) and closely resemble the 

vector representation model proposed by McNaughton 

et al. in 1995 (31) 

• Type: Pyramidal (31) 

• Predominant Brain Area(s): Hippocampus (CA1) (31, 

33) 

• Predicted to be bound to two or more landmarks and 

would fire at all locations, which have matching 

distance-bearing relationships to landmarks. Landmark-

vector cells are functionally equivalent to boundary 

(vector) cells except that instead of boundaries, they 

signal proximity to a barrier (fixed external landmarks) 

(31). They differentiate between subsets of objects 

(33), fire at a unique spatial location (31), and 

encoding landmark identity and saliency (41) 

• Distinct from object-vector cells, which are sharply 

tuned from the first trial, landmark-vector cells emerge 

slowly and appear to depend on experience (33) 

• “May arise from object representations and object-

based spatial representations of the LEC in conjunction 
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with path integration-based inputs (such as 

representations of head direction and distance) from 

MEC” (31) 

Speed Cells • Type: Pyramidal (42) 

• Predominant Brain Area(s): Medial Entorhinal Cortex 

(MEC) (43) 

• Speed cells possess linear positive response to running 

speed, hence providing a dynamic representation of 

self-location that contribute to the update of grid-cell 

activity when one is moving across space (43) 

Object-Vector Cells • Type: (Not specified) 

• Predominant Brain Area(s): Medial Entorhinal Cortex 

(MEC) (33) 

• Object-Vector Cells are allocentric vectoral 

representations in the MEC which support position 

mapping of objects in distance (peri-personal space). 

They “discharge at specific distances and directions 

from salient objects, independently of the identity, size 

or location of the object or the orientation of one’s body 

axis. Discrete high-contrast objects induced object-

vector fields regardless of whether they were internal to 

the environment or attached to external bounding 

walls.” (33)  

• Object-vector cells are theorized to intermingle with 

grid cells and head-direction cells that encode position 

in a distal framework (33) 

There are also Misplace/Mismatch Cells (O’Keefe, 1976), Spatial View Cells (Rolls, 1999; 

Rolls and Xiang, 2006), Splitter Cells (Wood et al., 2000), Barrier cells (Solstad et al., 

2008), Time/Sequence Cells (Pastalkova et al., 2008; McDonald et al., 2011), Band Cells 

(Julija Krupic et al ,2012), and (Memory-)Trace Cells (Tsao et al.,2013 (Briefed above); 

Bicanski and Burgess, 2018; Salman et al., 2019), Goal-Direction Cells (Sarel, 2017), 

Reward Cells (Gauthier and Tank, 2018), “Social Place Cells” (Danjo et al., 2018, Omer 

et al., 2018) and Irregular (Spatial) Cells (Meister and Buffalo, 2018) which are not 

discussed in this table. 

Table 1.1 Summary of Spatial Cells and Features 

 

For a rough illustration of different spatially modulated cells’ firing patterns, Behrens et al. 

(2018) have compiled a figure that shows the anatomical location of the hippocampus and 

entorhinal cortex, along with a variety of other spatially modulated cells in these regions 

(Figure 1.1 Examples of Spatially Modulated Neurons in the Hippocampal Formation).  
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Figure 1.1 Examples of Spatially Modulated Neurons in the  Hippocampal Formation (44) 
As a brief overview, (A) showed the homologous network organization of the mammalian animals: rat, monkey and human 

(44). Meanwhile, in (B), (i) place cell is mainly associated with a single location and induces activity restrictively, (ii) grid cell 

which sourced in MEC is activated when the animal is situated in one of the multiple locations that located in a triangular 

grid, playing a role in decoding vector and distances between the locations, (iii) “social place cell” spikes in response to the 

location of another animal, (iv) head-direction cell activity is correlated to the animal’s facing direction, (v) object vector cell 

decodes direction and distance information to an object (egocentric mode: self-to-object), (vi) reward cell is activated at the 

vicinity of reward itself, (vii) boundary vector cell gets activated by deriving the representation of boundary from a distance, 

(viii) goal direction cell encodes movement direction in relation to the goal (44). 

 

1.2.1 Utilization of Virtual Environments on Spatial Cognition 

Studies and the Viability of Donderstown 
 

Exploration (45), navigating and imagined navigation (46, 47) studies using non-invasive 

functional MRI and VR environments have found grid cell-like representations in humans. 

Researchers have postulated that grid cell-like coding mechanisms in the entorhinal cortex 

(EC) enable us to traverse space in situations such as imagined navigation, which would 

lead to mental exploration and recalling of previous experience (46). Horner et al. (2016) 

observed blood-oxygen-level-dependent (BOLD) fMRI signal changes in EC during both 

movement and imagination phases in a virtual reality (VR) environment, but not during 

the stationary phase in the study (46). These findings were further supported by Bellmund 

et al. (2016) who used a newly created VR city, Donderstown that was carefully built to 

comply with their own set of imagined navigation tasks (47). Both of the studies found 
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that EC may contribute to mental simulation more generally than expected as spatial 

processing in the absence of visual input is also sensitive to the six-fold rotational 

symmetry properties of grid cells’ signals (47). Meanwhile, in another study that performed 

behavioral spatio-temporal learning and memory tasks using Donderstown by Deuker et 

al. (2016), it was suggested that humans form a combined event map of memory in the 

hippocampus (48). 

In sum, the results from these two studies using Donderstown have proven the reliability 

of our chosen virtual environment to study spatial cognition in simulated agents. In the 

next part, we will be discussing the background of deep learning and virtual environments, 

as well as the main algorithm behind navigating agents. 

 

1.3 Machine Learning, Neural Networks and Virtual 

Environments 
 

In an effort to simulate neural computations of space and memory using neural network 

models, there were two major papers that studied path integration in simulated agents 

with recurrent neural networks (RNNs): first by Cueva et al. (2018) who managed to find 

representations of band cells, border cells, irregular cells and grid cells (49), and a second 

by Banino et al. (2018), who used a long short-term memory (LSTM) architecture, to find 

grid representations (50). The models from both teams have enabled the artificial agents 

to conduct shortcut behaviours in a 2D virtual environment (49, 50). But where did the 

concept of artificial neural networks first arise? 

Observations of how human thinking have contributed to the invention of automation and 

early robotics. Subsequently, there came the term artificial intelligence, which was phrased 

in 1956, and can be defined as machines that exhibit some human intelligence (51). 

Meanwhile, neural networks constitute a central category of artificial intelligence research. 

The earliest neural network was modelled by Warren McCulloch and Walter Pitts, who used 

electrical circuits known as logic gate circuits (52) that have thresholds and weights, but 

no layers (53). Subsequently, one of the most influential factors was contributed by the 

neuroscientist, Donald Hebb, who reinforced the concept of Hebbian learning in neural 

networks, where “cells that fire together, wire together” (54). This concept has then 

further been expanded into Hopfield networks, which are commonly known as attractor 

networks or auto-associative networks (17, 55) that allow generalization, familiarity 

recognition, categorization, and error correction in a time separated manner (56), for 

pattern separation and pattern completion of different representations (17). 

Referring back to the development history of neural networks, the Perceptron was 

introduced by Frank Rosenblatt in 1957 (53), and is capable of performing basic logical 

operations (AND, OR, and NOT) to classify linear tasks (52). The Perceptron possesses 

only an input layer, a hidden layer and an output layer. This limitation was identified by 

Minsky and Papert in 1959, and only began being resolved around the 1980s (53), when 

feed-forward neural networks were introduced with multiple layers (52). Tsodyks and 

Sejnowski later developed neural networks that came with feedback and feedforward 

coupling (57) to find out the values of the hidden layer and enable weighted learning (52). 

The mentioned term - feedback, is commonly known as back-propagation, an algorithm 

that allows weights updating between layers (52).  
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While there has been intense corporate competition to create better hardware to support 

neural networks, the smart systems today are still largely linked to machine learning that 

requires big data and engineers (51). Additionally, despite early successes, the concept of 

deep learning did not emerge until Hinton’s multi-layer neural networks with Restricted 

Boltzmann Machine and Deep Autoencoder were proposed (58). These followed Bengio’s 

breakthrough with metamodelling and LeCun’s findings using convolutional neural 

networks (58). Thereafter, more and more variations were surfacing either in 

enhancement of existing models or new kinds of neural networks (58). Alongside the 

improvement in technology and the invention of more and more dedicated graphics 

processing units (GPUs), we are currently stepping into a rapidly developing era of deep 

learning. Relating deep learning to everyday life, many large corporations have started to 

invest on deep learning, such as Google Brain, Deep Mind, Facebook AI (58), Alibaba, 

Microsoft Research AI and IBM Watsons. Consequently, almost all digital things today are 

highly affected by them, such as Google Translate, Alibaba Cloud Image Search and even 

the lung image diagnosis and forecast of disease spreading for pandemics. 

 

 

Figure 1.2 Brief Summary of the Development Timeline in Neural Networks (58) (59) (52) 
A very brief overview of technologies (top left) and evolution of neural networks (top right and bottom) 
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Virtual Reality (VR) Augmented Reality (AR) Mixed Reality (MR) 

An immersing simulated 

experience with 

computer generated 

environment that can be 

similar or completely 

different from the real 

world, comes in 3Ds, which 

can be explored and 

interacted with, such as 

manipulating objects and 

performing actions (59, 

60). For example, Google 

StreetView, Oculus and 

Donderstown. 

 

 

Projection of virtual 

objects into physical 

space whether viewing 

through lenses or projectors 

(61). For example, Ikea 

Place, Snapchat Lenses & 

Geofilter, Google Glass and 

Microsoft HoloLens. 

 

 

 

Mixed reality encompasses 

both augmented reality and 

virtual reality that allows a 

digitally interactive 

experience. Commonly 

associated holograms 

with mixed reality 

headset -- a device that 

enables users to see, grab 

and interact with 

holographic content just like 

physical objects and 

environments (62). For 

example, SixthSense by 

Pranav Mistry. 

 

 

 
Table 1.2 Differences between VR, AR and MR 

Differences between the 3 main simulated environments available today. Our Donderstown is a VR environment. 

 

However, one may start to wonder, how do robots in real and virtual worlds deal with 

navigation problems? To become as autonomous as possible, they have to be able to 

perform real time robotic mapping via odometry such as visual localization and motion 

estimation (63). This method is well known as simultaneous localization and mapping 

(SLAM) (63). SLAM was first proposed by Smith et al. in 1988 using extended Kalman 

filters (EKF), which was later implemented and expanded by others (64) (see Figure 1.3 

Example of SLAM Methods for instances). 

 

Figure 1.3 Example of SLAM Methods (65) 
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To ensure this SLAM approach can enable a machine, especially a mobile robot, to 

successfully localize, the model has to be capable of performing: robot position prediction 

(based on odometry and landmark), observation (feature extraction), measurement 

prediction (global-to-local frame transform, i.e., coordinate transformation between the 

world frame and the sensor frame), matching (data association and correlation that will 

be used as a prediction of map), and estimation (filter update based on learned weights) 

(66-68). Beyond linear navigation, the model has to be able to perform loop closure too, 

i.e. correct cycle detection, handling of uncertainty and integration of new landmarks in 

dynamic environments (66, 67). With such success, the model will be applicable not only 

to metric and topological maps, but also cognitive maps (65). 

Artificial intelligence outputs have also inspired neuroscientists working in computational 

neuroscience to work further in humanizing a robot into learning spatial environments like 

humans and animals. An interesting model known as RatSLAM (Figure 1.4 Overview of 

RatSLAM Versions) was created by Milford and Wyeth, who were inspired by SLAM and 

empirical research on the rodent hippocampal cognitive map (69, 70). The very first model 

of RatSLAM (Figure 1.4(a)) was built based on competitive and continuous attractor 

networks that can take visual inputs (a.k.a. local view cells or landmark cues) to support 

its pose hypotheses and update the estimation (self-motion cues) based on the shifting of 

activity packet to allow further path trajectory via the wheels (70). The pose is represented 

by the place cells (position) and head direction cells (orientation) separately in two 

networks (70). The model however encountered difficulties in 2D environments due to the 

inability to hold multiple pose hypotheses (71). This matched the boundary problem 

proposed by McNaughton et al. (2006) for connections around the edge of the neurons 

layer (72). To overcome this issue, the same group then combined place and head 

direction cells into one single network, and named these cells, pose cells (70), which had 

very similar properties to conjunctive grid cells (70) (Figure 1.4(b)). This remodelled 

version encountered collision (1 pose cell representing >1 place) and discontinuity (>1 

pose cells representing the same location), leading to goal recall breakdown (73). To 

overcome this issue, a third version of RatSLAM (Figure 1.4(c)) was generated. Activity in 

the pose cells is updated by self-motion cues, forming tessellating patterns similar to grid 

cells and calibrated by local views for data association to support path integration (74). 

Additionally, this newer generation had an additional feature known as a spatial experience 

map that formed based on information from pose cells, local view cells, and self-motion 

cues (74). An experience is a matched activity pattern of pose and local view cells (74). 

Any difference in the pairings would lead to the formation of new experience that is linked 

to previous experience (node) via the distance obtained from self-motion cues, and 

corrected via loop closure (74) involving the techniques graph relaxation (average 

between visual cues and self-motion cues to get the best overall map), map pruning 

(divide experience map into a grid and ensure one grid represented only by one place to 

maintain a reasonable number of places in map) and path planning (transitions- distance, 

speed, temporal between goal places) (69). This model provided the robot with a 

continuous and reusable map for navigation (69, 75). With this success, these researchers 

have proceeded to create an open source SLAM system known as OpenRatSLAM (76), 

which inspired other labs to develop their own related models, such as adapting to a 

humanoid robot (77), Gist+RatSLAM (78), visuo-tactile SLAM (ViTa-SLAM) (79) and active 

neural SLAM (80). 
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Figure 1.4 Overview of RatSLAM Versions (69) 

 

1.4 Research Questions 
 

Taken all of this previous research together, we wondered: (i) Is it possible to train a deep 

neural network to learn the representation of a 3D virtual reality environment 

(Donderstown) from 2D snapshots, to predict the position where a given snapshot was 

taken? (ii) Which type of deep neural network is most suitable? And how does it achieve 

its learning goal? 

In reference to our research questions, we specifically built and trained a simple deep 

convolutional neural network (CNN) to learn part of Donderstown and tested its ability to 

generalize the entire environment. We were interested in determining whether 

computations guiding how humans learn a virtual environment can be captured using deep 

learning. Additionally, this model may also act as a preliminary indicator of how close we 

can give a simulated agent human-like spatially modulated neural coding and how this can 

be extended in the future. 

As a side note, due to time constraints and limited resources, the model was built to learn 

about Donderstown via snapshots instead of self-navigation. In particular, we tested 

whether our model would demonstrate hippocampal-like spatial cells and homing vectors 

(individual coordinate prediction), and potentially predict the whole assembly of 

Donderstown as an event spatial map solely based on its learning of the static spatial 

representation environment. 
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Chapter 2 : Methods 
 

2.1 Overview 
 

This project mainly utilizes the freeware and open-source toolboxes available online such 

as Python, Anaconda (Jupyter Notebook) and Keras. No living subjects are included in any 

part of this project. As the main data supplemented for the model testing were snapshot 

images from Donderstown, we  decided to build a deep convolutional neural network (CNN) 

to process these images. To judge the novelty of our model, we have tried multiple ways 

of data feeding and adjustments of steps in the model. More related details will be 

explained in upcoming sections. 

 

2.2 Our Selected Virtual Environment 
 

Our datasets were created from snapshots of Donderstown. Donderstown was built using 

the Unreal Development Kit (81) (please refer to Figure 2.1(a) Donderstown (top) for 

illustration of the virtual town). It is a large scale, urban VR city with a complex layout of 

unnamed and curved streets, and irregularly outlined squares and parks inspired by the 

old-style German town, and is surrounded by a mountain range (47). As previously 

mentioned, the very first study using Donderstown VR city by Bellmund et al. (2016) 

showed that head direction and grid cell representations are exhibited even in imagination 

tasks without an actual movement (47). In another paper by Deuker et al. (2016), they 

have suggested that memory is related to spatio-temporal network mechanism of episodic 

memory (48). This indirectly suggested that spatially modulated hippocampal neurons 

could be engaged during memory recall tasks involving Donderstown. 

 

Figure 2.1 (a) Donderstown (top) and (b) Random Checking of Positional Angles (bottom) 
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2.3 Model Architecture 
 

The most commonly used neural networks consist of: 

• Recurrent neural networks (RNN) that are most frequently used in natural 

language processing and speech recognition due to its feedback connections 

feature (82); 

• Autoregressive (ARe) models that use values from previous time series to predict 

future values (83); and the rapidly developing 

• Convolutional neural networks (CNN) that perform object recognition via a sliding 

window method (84) to do classification, localization and detection that can also 

be used for object verification and style transfer (85). 

On the other hand, there are also newer and interesting models to neuroscientists: e.g. 

the generative query network (GQN) that was developed by Eslami et al. (2018). In 

particular, the GQN can see a scene from one viewpoint and predict the same scene in 

another viewpoint (86). While there are many variations of these neural networks, we 

decided to build our model on top of the CNN basic structure (please refer to Figure 2.2 A 

Typical CNN Architecture for a brief concept of CNN general connectivity map). 

 

2.3.1 Convolutional Neural Networks (CNNs) 
 

We have chosen convolutional neural networks (CNNs) to be the basis of how we build the 

structure of our model as they fit what we needed in this project – image processing. More 

details about CNNs will be outlined precisely in what follows. 

CNNs are generally feedforward networks and have been actively applied for visual task 

processing (87).  Inspired by the neurobiology of visual cortex, CNNs were first proposed 

by Kunihiko in 1980 (88). However, the real backbone of CNNs was started by LeCun et 

al. who developed a CNN model named LeNet-5 (88). This LeNet-5 which is capable of 

obtaining image representations and visual patterns from raw pixels has multiple layers, 

and is capable of performing backpropagation (88). With the performance limitations 

detected by researchers, and along with the improvement of digital technology in hardware, 

datasets and algorithms (87), CNNs further evolved with many different models such as 

AlexNet, ZFNet, GoogLeNet, VGGNet-16, ResNet, Inception models, ResNeXt, SENet, 

MobileNet V1/V2, DenseNet, Xception models, NASNet/PNASNet/ENASNet, and 

EfficientNet (84). Despite their differences, their basic components of processing are very 

much alike (88). 

Technically, the basic architecture of CNNs is composed of an input layer, at least one or 

more hidden layers which would include a combination of convolution, pooling and possibly 

normalization layers before the fully connected layers, classification layer and an output 

layer (84, 89), which can be visualised in the figure below (Figure 2.2 A Typical CNN 

Architecture). In other words, the hidden layers are made up of nodes/neurons, whereby 

each of them receives some inputs and has a learnable weight and bias which are capable 

of converting raw image pixels into class scores (90) based on user-defined parameters. 

Convolution layers are arranged in 3-D (height, width, depth/color channels) (89, 90), and 
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learn the feature representations of the input (87) by computing the dot products between 

inputs and filter values (84) before an optional non-linearity (87) activation is used (84). 

 

 

Figure 2.2 A Typical CNN Architecture (91) 

 

Unlike in regular neural nets where each neuron in each hidden layer is fully connected to 

the previous layer and is functioning independently in the same layer, CNN nodes are only 

connected to a small region from previous layers, which helps to reduce overfitting and to 

generate a single vector class score arranged in the depth dimension for the image at the 

end of the model training (90). Next, pooling layers are used to down-sample the spatial 

dimensions (i.e. width and height) (90) which helps in speeding up calculations and 

potentially mitigate overfitting issues (84). Subsequently, fully connected (FC) layers will 

compute the class scores (90). FCs are fully connected to the previous layer and calculate 

the activation with matrix multiplication and a bias offset (84). Lastly, the 

loss/classification layer is used to monitor the training process by determining  deviations 

between the true and expected labels (84) prior to obtaining the output layer. 

 

2.3.2 Our Model Architecture 
 

While CNNs form the blueprint for our model, the fine tuning process was the most time-

consuming part in this project. Our test coverage included different hardware allocation 

(e.g. different GPUs, RAM size and hard disk storage type), data distribution of training 

and testing generators, values for numbers of grid_division, sampling size, layers of 

convolution (and the parameters inside such as filters, kernel size, activation, padding, 

strides; see appendix - Simple Explanation of Parameters), dense layers (and the 

parameters such as number of units, activation, L1 and L2 kernel/activity/bias regularizer), 

dropout, outputs (XY coordinates with and without angles), optimizers, learning rates, 

losses, metrics, steps and epochs, as well as different normalizations. 

Discussing the most essential component in the model development, we have tried 

multiple different approaches while building our model architecture. To summarize, we 

generally concluded that the following elements help to train our model successfully: 



16 
 

(i) We started with 64 filters and systematically increased up to 256 filters for the 

convolutional layers in order to benefit from efficient data training and lower 

computation time. A lower number of filters would affect the model training. 

(ii) We used a kernel size of (7,7) across all convolution layers, which produced 

better models than smaller kernel size. This is potentially because we did not 

resize our input images, but kept them relatively big at the original pixel 

dimensions (108,192,3). 

(iii) Adding more convolution layers made the model learn better (we capped the 

amount of layers at 13, as additional convolution layers did not provide 

significant improvement to the training). 

(iv) Activation in the convolution layers is a very important factor that determines 

whether the model learns. Relu for all convolution layers without combination 

with non-relu functions is the best option for our current case based on 

inspection over the outputs (see appendix-Simple Explanation of Activation 

Function to understand what Relu is). 

(v) Utilization of dropout and stride between the convolutional layers did not affect 

our model training as much, but helped to save some computing time, down-

sampled the inputs, reduced overfitting and perhaps helped to make the model 

more robust. 

(vi) Using an initial learning rate (lr) of 0.0001 (1e-04) for our Adam optimizer 

(check out section 2.4.1.2 Optimizer to learn about Adam) without the 

utilization of any learning rate scheduler contributes to a good model. However, 

the model’s generalization ability gets improved slightly with lr=0.00001 (1e-

05) – our ideal lr. 

Due to time constraints from carrying out further parameter tuning, we decided to 

structure our model (Figure 2.3 Model Architecture) based on the statements we 

summarized above. 
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Figure 2.3 Model Architecture 
Our model consists a total of 13 relu convolutional layers that were padded to avoid features down-sampling and 

significant features loss. Other than the 1st convolutional layer, all other convolutional layers get 25% dropout to prevent 

overfitting. 

 

2.4 Model Training 
 

The Donderstown snapshots data for this project consisted of 652,720 non-uniform, first-

person perspective (egocentric)  images at ground level from 10 different runs. These 

652,720 images were derived from a total of 81,590 positions, which were taken at 8 

different angles that differ by 45° (0°/360°, 45°, 90°, 135°, 180°, 225°, 270°, 315°). We 

performed simple validation of data points by plotting the coordinates into a topographic 

map for each run and across runs (overlaying all the 10 runs) for visual inspection (Figure 

2.4 Plotting of Data Points for Validation).  To further verify the usability of the snapshots, 

we have also decided to do visual inspection on all 8 angles of a given coordinate for every 

100th coordinate of each run (Figure 2.1(b) Random Checking of Positional Angles 

(bottom)). 
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Figure 2.4 Plotting of Data Points for Validation 
We plotted the positions onto a topographic map based on received labels of data to see if these plots matched a bird’s eye 

view of Donderstown (c). (a) is the plot from single Run 1 and (b) is the overlay of all 10 runs. 

 

To initiate image preprocessing, we calculated the group mean and group standard 

deviation prior to 2-steps normalization, i.e. local centering and data standardization. 

Normalizing the data in 2-steps meant: (i) we obtained post-mean-processing values close 

to 0, which generally helped speed up the learning and led to faster convergence, and (ii) 

we rescaled the data into a pre-defined range to ease the application for further algorithms 

(92). For both mean and standard deviation values, we performed the calculations across 

the width and height of RGB channels separately, which resulted in individual mean pixels 

across width and height for each of the 3 channel arrays (RGB). 

Thereafter, data of each run was extracted by first redistributing 50% of all the data into 

training data (X, i.e. oblique viewing angles), while the rest were defined as testing data 

( , i.e. cardinal viewing angles)) (Figure 2.5(a) Angles Redistribution). Meanwhile, the 

maximal and minimal of both X and Y was respectively obtained. Based on the maximal X 

and Y obtained, we divided the space from 0 to maximal XY values evenly based on the 

chosen parameter (in our case, we fixed the value as 25, please refer to Figure 2.5(b) 

Sample Illustration of 25 Evenly Divided Grids at Size of Topographic Map of the Run for 

clearer showcase). These new grids then represented the new XY coordinates. Original XY 

coordinates that were closest to these new XY coordinates were selected. The reason why 

sampling locations of the snapshots were predetermined to uniformly cover Donderstown 

was to prevent the model from being biased towards one specific 

location(/position/coordinate) in the environment. Next, the related snapshots that further 

matched both the coordinates and desired angles criteria were extracted, with the X and 

Y values being downscaled to values between 0 to 1 using the formula (i.X - minX)/(maxX 

– minX) and (i.Y - minY)/(maxY – minY). Along with the group mean and standard 

deviation values, these data are stored in a table (pandas dataframe), which will later be 

used by the data generator to yield data for the model training. 
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Figure 2.5 (a) Angles Redistribution (b) Sample Illustration of 25 Evenly Divided Grids at Size of Topographic Map of the 

Run 

 

To ensure our self-customised method of data generation and normalization worked 

correctly, an additional step was built to randomly choose the data from the table array at 

a rate based on the parse-in value specified for the variable ‘sampling_size’, in a non-

repetitive manner for every batch. In our case, 8 was the sampling size used for random 

visual checking of the data. The program-selected data were then normalized by first 

conducting a 2-steps normalization with (i) (img - groupMean) / (groupStd) for local 

centring and data standardization, and (ii)  converting the image values into the range of 

between 0 to 1 by adapting the new image values into the formula: image = (image - 

np.min(image))/(np.max(image) - np.min(image)). Both the original image and end 

normalized product are then plotted side-by-side with the histogram and saved into 8 

different figures to show the differences for visual inspection (Figure 2.6 Example Figure 

of Original vs Normalized Image). 
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Figure 2.6 Example Figure of Original vs Normalized Image 

 

The  data generator function then repeatedly paired n number of images from the table 

array based on user-specified batch size in a non-repetitive manner, and underwent the 

similar 2-steps normalization processes mentioned above, which would yield an array of 

images and xy values (i.e. location/position labels) for the model. The model will take the 

batch’s images from the training generator as input in the feed forward phase and learn 

the corresponding xy values, whereby the learning is validated by using the batch’s dataset 

from the testing generator, i.e. using the images as input, and predict the xy values before 

comparing the deviation from the correct xy values, and performing backpropagation to 

update the weights (93) after each epoch. In general, we can define backpropagation as 

a weight update algorithm that takes actual and desired output into account (94). 

 

2.4.1 Data Generator, Optimization and Hyperparameter Search 
 

2.4.1.1 Data Generator 
 

Per previously mentioned, in order to feed the snapshots into our model, we decided to 

use a Python yield function to build a memory efficient data generator, which keeps the 

data on disk until the model requests a new sample (95). Each input and output sample 

consisted of a snapshot of Donderstown with the corresponding X,Y position, which we 

combined into a batch of size 8. 
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2.4.1.2 Optimizer 
 

During model training the weights were adjusted to minimize the mean absolute error 

between the real X,Y position and predicted X,Y position. Optimization was done using a 

variant of Stochastic Gradient Descent (SGD), namely Adam. First introduced by Kingma 

and Ba in 2015, Adam (adaptive moment estimation) was claimed to blend the benefits of 

both the modified SGD: AdaGrad (adaptive gradient algorithm) and RMSprop (Root Mean 

Square Propagation) (96). The authors suggested that this method is capable of working 

well with non-stationary objectives and sparse gradients, suitable for large datasets and 

parameters, while magnitudes of parameter updates are unaffected by rescaling of 

gradients. Additionally, it requires little tuning as Adam uses a moving average of the 

parameters, which helps in removing noise in the (batched) gradient updates and assures 

convergence to a robust step size. 

Stochastic gradient descent (SGD) is a first-order iterative optimization algorithm that 

estimates the error gradient of the model’s current state by looking for global minimum of 

one example at a time (step), and calculates the gradient (which is later being used to 

calculate the weights). These are repeated for all the examples throughout the training 

dataset in a single epoch (97) before performing backpropagation to update model’s 

weights (98). The Adam optimizer on the other hand is a modified SGD (99), which 

classifies as a second-order optimization and calculates the exponential moving average 

for the gradients ɱ (estimated mean) and the squared gradients ʋ (estimated variance). 

Both ɱ and ʋ are then bias corrected to prevent them decaying to their initial value, which 

is typically initialized as 0. The weight is then updated with the calculation as follows: 

Wt+1 = Wt - 
𝛼

√ʋ̂𝑡 +ɛ
 •  ɱ̂𝑡 

with Wt+1 denoting new weights, Wt denoting old weight, 𝛼  denoting learning rate, ɛ 

denoting a small value avoiding the division by zero,  ɱ̂𝑡  denoting bias-corrected 

exponential moving averages, and √ʋ̂𝑡 denoting square root of the bias-corrected variance. 

Since the introduction on Adam, the authors have also proved that Adam outperformed 

AdaGrad, RMSProp, SGDNesterov and AdaDelta on MNIST. Additionally, Adam has also 

been recommended as the default algorithm (92) by the Stanford Vision and Learning Lab. 

Taking all of these strengths into account, we chose Adam as the optimizer for our model. 

 

2.4.1.3 Hyperparameter Search: Learning Rate 
 

The only argument that we have pre-defined in our optimizer was the initial learning rate 

(lr). The lr determines the speed of convergence towards the optimal weights as the 

specified value defines the weights’ adjustment in regard to the loss gradient descent 

(100).  It is especially important to decide the right lr to be used in the model in order to 

enable the model to converge and save training time and resources (100). A very high lr 

(e.g. 0.1) may miss the optimal solutions (global optima) (100), leading to an unstable 

training process that mainly picks up on sub-optimal solutions (local optima) and causes 

pre-mature convergence (98, 101, 102), and possibly lead to protracted oscillating 

between certain weights (98). A lr that is too small (e.g. 0.00000001) would slow down 

the time to reach convergence (100). This slowing could also lead to a tendency to mainly 

converge into the closest local minimum (103). 
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While it is a time-consuming trial-and-error process to select the best lr for the model 

(100), it is always good to perform sanity checks before intensive model tuning such as: 

(i) tracking the loss function over time, and (ii) accuracy (92). Referring to the figure 

(Figure 2.7 Tracking Quantities for Learning Rates: (a) Loss and (b) Accuracy) adapted 

from the Stanford Vision and Learning Lab below, we need to achieve a loss function that 

decreases steeply but not overly drastic in reasonable time (converging) that continues 

with a stable decreasing trend (moving towards the optimal solution), and that resembles 

the red smooth decreasing plot in Figure 2.7 (a). We also have to ensure that the accuracy 

between the training and validating datasets does not deviate too much from each other 

to avoid overfitting, just like the red and green plots in Figure 2.7 (b). Theoretically, a 

model that is able to generalize fully will not be showing any overfitting or underfitting 

(104), but this is unlikely to happen in practice (105). Overfitting and underfitting are 

terms to label the deficiency of the model’s performance (104). Overfitting often refers to 

a model that performs well on the training data, but not on the testing data. During 

overfitting, the model learns both the signal and noise in the training data to an extent, 

where there is a negative impact on the model performance when learning new data (106). 

Conversely, underfitting refers to a model that could not generalize both the training and 

testing data (105). Similarly, “a model that is underfit will have high training and high 

testing error while an overfit model will have extremely low training error but a high testing 

error” (107). 

 

 

 

Figure 2.7 Tracking Quantities for Learning Rates: (a) Loss and (b) Accuracy(92) 
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2.4.1.4 Loss Functions 
 

In the interim, the loss function calculates how well the model accomplishes its intended 

task under the general assumption that the lower the value the better the performance in 

the dataset. In our model, we have used mean absolute error (mae) for loss, and mean 

squared error (mse) and accuracy (acc) for metrics. Mae is the average of the absolute 

differences between actual and predicted values in the test (i.e. the average prediction 

error) regardless of the direction of the deviation (always positive differences) (108). Mae 

is less sensitive towards outliers and useful for multimodal distributions, where the median 

tends to be the optimal prediction (108). Mse on the other hand is similar to mae, except 

it squares the resultant mae value (108). As mse squares the errors, the values amplify 

significantly, making it sensitive towards the outliers and typically results in a normal 

distribution around the mean (108). Lastly, the acc metric computes the mean accuracy 

across predictions (109). As for acc in our model, we did not specify the exact type of 

accuracy metric to be used, nor set any extra parameters, rather, we let the backend 

decide what to use. Potential accuracy metrics include binary accuracy for problems with 

two classes, categorical accuracy for multi-classes, and sparse categorial accuracy for 

sparse targets (109). In our experience, sparse categorical accuracy happened seemingly 

due to our sparse target’s input (i.e. Our inputs were not specifically categorised or 

classified [e.g. 0 is cat, 1 is dog], but were being numerically vectorized using the feature 

weights to get our xy position labels. The actual label values were then being used to 

compare with the predicted label values to compute the accuracy). 
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Chapter 3 : Results 
 

3.1 Overview and Method Recap 
 

This project started out by training a convolutional neural network (CNN) to find out if it 

is able to learn a representation of Donderstown, and if it can generalize to new unseen 

locations. To do this, it implies that the model has to be capable of storing a simple 

representation of Donderstown in its weights. After some initial testing when first building 

the model, the model was trained on four cross-diagonal angles and tested on another 

four out of the eight provided angles (of different snapshots) for a single position. This 

would eliminate the possibility of trivial associative match if we train all images, and it will 

be good to check if the model is robust enough to learn and estimate. 

 

3.2 Training a Neural Network to Estimate Locations in 

Virtual Reality 
  

In this part, we will show plots to demonstrate that our model successfully learns a spatial 

representation of Donderstown. We used the model mentioned in the previous chapter, 

with the convolution layers using relu as activation and fully connected dense layer using 

linear as the activation. Also, note that the model has only divided the dataset into two, 

i.e. training and testing. Thus, testing dataset is equivalent to validation of our model. 

 

3.2.1 Training and Testing Plots 
 

To validate the performance of our chosen model’s architecture, we first checked over the 

training loss and validation loss values of the 100th epoch post-training, and realized that 

the model showed small overfitting values in general (recap: the loss was calculated using 

mae). Next, we inspected the  results, i.e. the losses (both training and validation losses)  

and judged that lr=1e-06 (Figure 3.2(e)) is not ideal as an initial lr. On the other hand, 

both lr=1e-04 (Figure 3.2(a)) and lr=1e-05 (Figure 3.1(a)) indicated good lr for both the 

training and testing datasets. The lr=1e-05 (Figure 3.1(a)) showed the most consistent 

trend over both the training and testing datasets. The most significant update happened 

around the 30th epoch and continued to improve consistently in our model that trained 

with 1000 steps and 100 epochs. We further validated the losses with the mse (Figure 

3.1(b)) trend and judged that the losses plotted were correct. Thereafter, we checked the 

accuracy, and again, lr=1e-06 (Figure 3.2(g)) proved itself as a bad hyper-parameter with 

highly inconsistent trends for both the training and testing datasets, while lr=1e-05 (Figure 

3.1(c)) demonstrated a smaller overfitting as compared to lr=1e-04 (Figure 3.2(c)). A 

good model will keep the overfitting as minimal as possible, since a perfect model with no 

overfitting nor underfitting is practically non-achievable. By comparing the estimation 

ability, lr=1e-05 (Figure 3.1(e)) showed better generalization (with more evenly 

distributed prediction per indicated by the red dots, and lower error per indicated by the 
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density of the black line in the maps), as compared to lr=1e-04 (Figure 3.2(d)). In contrary, 

lr=1e-06 (Figure 3.2(h)) did not achieve a proper learnable weight for estimation and thus 

could not estimate the XY location correctly. In sum, we decided that lr=1e-05 is a better 

fit for our model. 

We used the validation set for all subsequent evaluation figures. We plotted the XY 

Euclidean error with a cartesian to polar plot (Figure 3.1(d)) in order to have a clearer 

overview of the deviation between the actual and predicted value. Based on the figure 

(Figure 3.1(d)-left), we observed that our model works well with very low error as shown 

by the dark purple dots which clustered mainly around 0. On the other hand, the light 

purple dots also appeared to be spreading around all angles without clustering to specific 

angles. To further illustrate if the model has an angle bias tendency, we plotted a 

histogram (Figure 3.1(d)-right). The result showed that the angles were mostly random 

across all angles. 
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Figure 3.1 Chosen Model’s Performance (1e-05) 
(a) Model’s (1e-05) Loss Plot. (b) Model’s (1e-05) MSE Plot. (c) Model’s (1e-05) Accuracy Plot. (d) Model’s (1e-05) Euclidean 

Error Plot (left) and Degree Error Plot (right). (e)Model’s (1e-05) Generalization on Testing Dataset. (f) Model’s (1e-05) 

Generalization on Training Dataset. 
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Figure 3.2  Model's Performance (1e-04 and 1e-06) 
(a) Model’s (1e-04) Loss Plot. (b) Model’s (1e-04) MSE Plot. (c) Model’s (1e-04) Accuracy Plot. (d) Model’s (1e-04) 

Generalization on Testing Dataset. (e) Model’s (1e-06) Loss Plot. (f) Model’s (1e-06) MSE Plot. (g) Model’s (1e-06) Accuracy 

Plot. (h) Model’s (1e-06) Generalization on Testing Dataset. 
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3.2.2 Chance Level: Mismatch Data Feeding’s Testing Plot and 

Model Performance Without Training 
 

To further decide if our model learns correctly, using the same chosen parameters, we  

shuffled the data by randomising the snapshots so that input and output were incorrectly 

matched. This allowed us to see if the model would still manage to learn any representation 

and gave us an estimate of the chance level of the model. Referring to Figure 3.4 Chance 

Level Trial, as the input data were incorrect, the model seemed to be incapable to converge 

correctly (Figure 3.4(a)) and consequently was unable to predict all the outputs well into 

both the training and testing phases (Figure 3.4(b)). This suggests that our model was 

able to learn very fine grained representations and thus the unmatched data made it 

almost impossible to decode a spatial memory map correctly. The polar plot further 

showed that the model ran into high errors (Figure 3.4(c)), while the averaged activation 

map displayed that activation was inconsistent (not shown in figure). 

We then wanted to know if the model could do a prediction without training (i.e. without 

running the .fit_generator command). Based on the figure (Figure 3.3 Model Prediction 

without Training) below, the model predicted every output coordinate as (0,0), as there 

were no trained weights and bias values to calculate the potential output correctly. This 

implementation consequently led to big error and a tendency to cluster between 0° to 90° 

(matching pattern between the predicted output representation map (Figure 3.3(a)) and 

the polar plot of Euclidean errors (Figure 3.3(b))). 

 

Figure 3.3 Model Prediction without Training 
(a) Generalization on Testing Dataset. (b) Euclidean Error Plot. 
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Figure 3.4 Chance Level Trial 
(a) Loss and Accuracy Plots. (b) Generalization on Testing Dataset (left) and Training Dataset (right). (c) Euclidean Error Plot 

(left), Degree Error Plot (right). 
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3.2.3 Different Proportion of Data Splitting  
 

While our presented model was using a data split of 50%-50% for the training and testing 

datasets based on the angles, we also tried to validate the model by using 20%-80%, 

50%-50% and 80%-20% for training and testing datasets respectively. To do this, we 

shuffled data rows, combined the data of all 10 runs, which matched the pre-criteria (i.e. 

closest coordinates) into a single pandas data frame, and split the percentage accordingly 

before the generator does its task. Eventually, we found out that our model was effective 

(Figure 3.5 Different Data Splitting Comparison). First, provided that all training was 

performed using lr=1e-05, all of them showed good lr per modelled in the loss plots, with 

train-test pairs of 50%-50% and 20%-80% showed possible overfitting as the validation 

loss (Figure 3.5(b)) and validation mse values (Figure 3.5(d)) were higher than the 

training loss (Figure 3.5(a)) and training mse values (Figure 3.5(c)) respectively. Accuracy 

plots (Figure 3.5(e) and (f)) on the other hand proved the claim and showed that a dataset 

with a lower percentage (i.e. smaller pool of total data) would have better accuracy in 

general regardless if it is a training or testing dataset. From the plots analysis, we realised 

that: (i) the 80% training set has an accuracy almost similar to its 20% test set (i.e. 

almost no overfitting/underfitting), (ii) the 20% training set has higher accuracy than its 

80% testing set (i.e. with a higher overfitting scale than its 50%-50% counterpart), while 

(iii) the 50% training set has higher accuracy than its 50% test  set (i.e. some small 

overfitting). These phenomena are correct because a lower training percentage (e.g. 20%) 

indicates less samples available and higher repetition during training, hence lower training 

errors (thus smaller training loss) and more overfitting (i.e. perform well on the training 

data but not over the testing data). This however leads to poorer generalization to the 

testing set. On the contrary, as the 80% training set has more examples for the model to 

learn, it is thus able to estimate the testing set more easily. Having 50% on the side 

reflects almost having a sufficient amount of examples, but probably does not cover all 

features present in the testing set, which may lead to some small overfitting. In sum, the 

model needs sufficient training experience to generalize. 
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Figure 3.5 Different Data Splitting Comparison 
(a) Loss Plot. (b) Validation Loss Plot. (c) MSE Plot. (d) Validation MSE Plot. (e) Accuracy Plot. (f) Validation Accuracy Plot. 
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3.3 Model Development and Sensitivity to 

Hyperparameters 
 

3.3.1 Model Performance Under Different Epochs 
 

To investigate how training epochs may affect the model performance such as its ability 

to generalize, we tested our model with 10 to 100 epochs at an interval difference of 10 

epochs. We realized the model provided good estimates starting around 50 epochs (Figure 

3.6 Effects of Training Epochs on Model Prediction), while further training slowly aids to 

decrease the loss values and increase the accuracy as shown in Figure 3.1(a) & (c) (and 

thus improved generalization ability). 

 

 

Figure 3.6 Effects of Training Epochs on Model Prediction 
The generalization of the model starts to be more effective around the 50th epoch. 
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3.3.2 Different Learning Rate (lr) on Model Performance  
 

As a selective expansion to section 3.2.1 above, and to see the effects of initial lr on the 

model training, we tested 7 different lrs: 0.1 (1e-01), 0.01 (1e-02), 0.001 (1e-03), 0.0001 

(1e-04), 0.00001 (1e-05), 0.000001 (1e-06) and 0.0000001 (1e-07). We chose 0.00001 

(1e-05) as the lr for our model that obtained the best score in general (see Fig. 3.7 Effects 

of Learning Rate on Model Prediction for illustration). From the loss plotting which was 

akin to the mse plotting, we observed that lr=0.0001 (1e-04) had the smallest training 

loss, but not the validation loss. In fact, lr=1e-05 has MSE trends that resemble each other 

more in both the training and testing (validation) (Figure 3.7(a)) datasets, with lower 

difference in values between them, making 1e-05 the ideal lr choice for the model. Lastly, 

we looked at the accuracy plots (Figure 3.7(b)), and lr=1e-05 is deemed the best model 

in terms of high efficiency and smallest overfitting. 

 

 

Figure 3.7 Effects of Learning Rate on Model Prediction 
(a) MSE Training and Validation Plots. (b) Accuracy Training and Validation Plots. 
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3.4 Hidden Layer Activations Represent Spatially 

Informative Cells 
 

3.4.1 Relationship between Dense Units (Nodes) in Last Hidden 

Layer to Our Model Performance 
 

Knowing that our model could learn the spatial layout of Donderstown, we were interested 

in what activation pattern in each of the units could be attributed to the precise estimation 

of the input’s XY location. Consequently, we investigated the last hidden layer by retrieving 

the activation of each node that stretched over all the positions before shrinking them into 

a squared bin of 2D histogram, and then further smoothed them using a Gaussian filter. 

This subsequently resulted in an ‘activations map’ plot. We found that nodes of the model 

learned Donderstown locations mainly via activations around the borders and corners. 

Based on inspection, all sides of borders and corners were covered among the 128 units 

of nodes applied (refer to Figure 3.8 Border-like and Corner-like Units). This is especially 

noticeable when we tried to average the activations of all the nodes to generate a single 

averaged activation map (Figure 3.9 Averaged Activations). 

We initially deduced that the model is able to judge the spatial environment by simply 

using a combination of two gradients, i.e. it decodes an output (XY position) by using a 

single axis gradient in one node and combine with another node to compute the estimation. 

Interestingly, we realized that the model may actually be capable of learning even more 

fine-grained representation than expected after we plotted the mean activations across 

the x- and y-axes into line plots, as both the axes showed different level/trend of activities. 

Meanwhile, we also assumed that corner-like units in the model could be a conjunction of 

boundary vector representations (resembled by the border-like units). 
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Figure 3.8 Border-like and Corner-like Units 

(a) Border-like Units. (b) Corner-like Units (possible conjunction of boundary vector cell / hinting possible transformation of 

corner units into border units). 
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Figure 3.9 Averaged Activations 

Note: Averaged activation maps in this report are subjects to be perfected over the shading due to a slight lacking in technical 

knowledge. 

 

3.4.2 Effect of Number of Dense Units (Nodes) in Last Hidden Layer 

on Model Performance 
 

The performance of the model is not very much affected by the dense units, unless it goes 

lower than 2. From the activations (Figure 3.10  Activation over Different Dense Units) 

below, it appeared that the model still mainly learned and estimated the positions via 

corners and borders. The results were also having low error rates and without specific 

angles clustering when we checked the Euclidean error in a cartesian to polar plot and 

histogram of degrees (not shown in figure). It was also able to predict the output well (not 

shown in figure). However, once the lower limit was exceeded, the model appeared to be 

no longer capable of generalizing, nor predict the output accurately with high errors (Figure 

3.10(a)-middle) and had a tendency to cluster around north and south (Figure 3.10(a)-

right) as shown by the single dense unit. We thus deduced that the model needs at least 

2 nodes to work out an output. In contrary, despite having different numbers of units, 

model performance seemed to have the same trends over loss and accuracy (not shown 

in figure).  
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Figure 3.10  Activation over Different Dense Units 

(a) 1 Dense Unit. (b) 2 Dense Units. (c) 4 Dense Units. (d) 8 Dense Units. (e) 16 Dense Units. (f) 32 Dense Units. 
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Chapter 4 : Discussion  
 

4.1 Overview 
 

We wanted to investigate whether a deep neural network can learn the spatial layout of a 

virtual environment, Donderstown. We consequently decided to build our neural network 

based on the architecture of a convolutional neural network (CNN) with our inputs being 

2D snapshots of Donderstown. Subsequently, we found out that our deep neural network 

was able to learn the spatial layout of Donderstown mainly via corner and border-like units 

(refer back to Figure 3.8 Border-like and Corner-like Units). 

 

4.1.1 Implications 
 

Our deep neural network was able to learn the virtual environment by analyzing the 

features of the inputs and storing them as different weights in the nodes, in combination 

with learning labels from the training dataset. The neural network eventually learned to 

compute the output for the testing dataset. We found that our deep neural network needs 

at least two nodes to judge locations in the virtual environment. We deduced that such 

efficiency is due to the absence of an energy constraint in the neural network’s nodes, in 

contrast with biological neurons. It is therefore unclear if exposure to just half of the 

training data would be enough for a human to judge and predict a full topographical map. 

Referring back to Table 1.1 Summary of Spatial Cells and Features, there are four main 

aspects about empirically observed border cells. First, they potentially work with head-

direction and grid cells to plan trajectories, thereby anchoring grid fields and place fields 

to a geometric reference frame (29). Second, border and grid cells associations are 

suggested to minimize the accumulated grid cells' error (35). Third, border cells sparsely 

exist with just less than 10% of the local cell population (29). Lastly, border cells encode 

one’s position in relation to the borders of the egocentric environment, and fire when one 

is near the edge of the local environment (29, 32), where they fire at specific distances 

from specifically oriented environmental boundaries (33). This firing provides connecting 

information between egocentric and allocentric boundaries (34), i.e. the vectors between 

self-to-object and object-to-object. Along with our findings, we also wonder if the model 

implicates border cells as one of the most important and efficient spatial cells, which play 

a key role in modulating and integrating the essential information to other spatial and 

directional cells. Moreover, it was argued that geometrical information of distant objects 

may be assessed using the nearer small object and further away larger object (110). This 

may explain why edges such as borders become an important aspect to judge the 

surrounding spatial environment. For example, if one failed to judge an edge, one may fail 

to differentiate between different objects as well. 

Our findings also included the involvement of corner-like units for all varieties of the 

successful models we discussed in the previous section. While it is unclear if corner-like 

units co-exist with border cells in biological settings, such as inside the hippocampal-

entorhinal circuit, we suspect that they can play an equally important role as the border 
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units. For example, adjoining junctions showed higher activation in all of the averaged 

activation maps in our model training, this could suggest earlier detection of the corner 

before transforming to the adjacent edge via a mechanism similar to the continuous 

attractor networks. This indirectly evokes the prediction that corner detection might be a 

feature preceding edge detection. In addition, the corner units might have partially 

selective and long-lasting activation that further activated the adjoining border following 

the perception of a vector relating the self to the external environment. Furthermore, these 

corner units could be a type of highly efficient, sparsely distributed spatial cell that is yet 

to be detected in animals due to inadequate technology or knowledge. 

Lastly, we deduced that accurate judgement of borders may be one of the keys to success 

in autonomous navigating agents, such as to prevent slipping and to match objects. For 

instance, it could help create robots that can climb the staircase independently with 

minimal to no accident, or predict an image location based on the extracted features that 

matched other learnt images in our model. 

 

4.1.2 Advantages and Disadvantages of Convolutional Neural 

Networks (CNNs) Relative to Biological Systems 
 

CNNs are recognized as one of the best models in the neural representation of visual 

images (111), especially when helping extract complex features from electron microscope 

(EM) image analysis (112). Relevant details about CNNs have previously been introduced 

in section 2.3.1. With the utilization of neural networks, one can know empirically difficult 

to control information such as the connectivity and activation of each node/layers, while 

also allowing one to perturb the units more easily and precisely (113). 

There are still challenges for simulated neural networks to fully reflect biological ones due 

to higher levels of complexity (113). One to one correspondence between artificial and 

biological neural networks may not be technically achievable for a long time. Likewise, 

there is always a trade-off between complexity and interpretability in modelling (114), 

which can be inappropriate when using a CNN to fully describe a biological system. For 

instance, CNNs have no different units to process black and white colours differently during 

visual perception (115), besides possessing different mechanistic levels. Constraints and 

demands in energy of both artificial and biological networks are unique (e.g. artificial 

neurons can perform backpropagation, while action potentials in biological neurons are 

propagated unidirectionally along the axons) (113). Subsequently, biological networks are 

highly efficient in power and memory, but CNNs are limited by the hardware capacity, 

resource availability, and computational expense for large-scale analysis (113). 

Nonetheless, while we are yet to understand everything about the brain, we do not really 

understand the machinery computation processes either (113) but are likely just observing 

the resulting output.  
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4.1.3 Disadvantages of Adam Optimizer 
 

An optimizer works to minimize the loss function using a set of algorithms that specify 

some particular ways in ruling the update of weight parameters (116). Due to time 

limitations, this project has mainly been using Adam as its optimizer. Despite positive 

results from Adam as mentioned in section 2.4.1.2, Adam has some drawbacks too. These 

included that: it was unable to converge to an optimal solution in some areas, and may 

have bad generalizing ability when the learning became saturated (117). Thus, in the 

future, those who use this ready-built model can try with other optimizers to validate the 

claims about Adam. 

 

4.1.4 Others 
 

It has been suggested that the mean and standard deviation values for local centering and 

data standardization (normalization) shall only be taken from the training dataset for 

application in the model training (92) to avoid information leakage from the testing dataset 

to the training dataset. However, we have tried that before, and deduced that it would be 

better to take the mean and standard deviation of the whole dataset due to data 

complexity of our dataset. To be specific, the colours intensities from different angles may 

be diverse largely among our dataset. We train and test alternate angles, instead of simple 

splitting of the data that have more or less the same nature. Therefore, it is justified to 

compute the values from the whole dataset to have unbiased and more representative 

values, so that different features can be scaled onto the same range and efficiently learnt 

by the model (Figure 4.1 Comparison of Image Pre-Processing). 
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Figure 4.1 Comparison of Image Pre-Processing 
Using a similar position from training(a) and testing (b) datasets that possessed different angles, it showed that our 

normalization method allowed good standardization of the images 
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4.2 Future Directions 
 

There are many aspects which can be expanded in this project. First, we could manipulate 

the input selection where we train only 180° North/West and test on 180° South/East. We 

also could similarly distribute the map into grids or diagonals, but only train on an alternate 

portion and see how the representation changes. Second, we may also freeze some of the 

spatial inputs by deleting (‘lesioning’) them directly in the inputs or altering the weights 

of nodes. That can help us see if the model’s performance becomes degraded by having 

both spatial and non-spatial (empty activation maps) units. Thirdly, we can also do data 

augmentation including translation and transformations such as shift, zoom, rotation, flip, 

random crop, colour shift, noise addition contrast change to the training dataset. 

Subsequently, we can use these features as an extra training dataset to examine if it helps 

the model to learn invariant features with better depth. Next, we can include angle as an 

output of the model, where we can evaluate if the model can handle the data to make 

higher complexity estimations. Lastly, we may slightly alter the architecture of the current 

model to train and decode on angle differences between separate snapshots. Beyond 

position and directional orientation, we might be able to optimize the model in estimating 

more realistic representations by replacing outputs XY with place cell activations and 

angles with head-direction activation, which might lead the model to discover more 

biologically plausible solutions. 

Additionally, since we can refer to the representation as a prediction-based experience 

memory map, we could expect to see place cells if we modify the algorithms used in the 

model. Lastly, considering that we managed to discover spatial units in a deep neural 

network that learns the representation of a virtual environment, it is unclear if we may 

find the phenomena of spatial cells’ activations similar to path integration when one is 

playing a non-landmark representation mobile game such as Flow Free (i.e. connecting 

dots game, Figure 4.2 Flow Free). To simulate this situation, perhaps one could modify 

the model to complete the dot patterns autonomously and have an insight into the model’s 

maze-challenge-solving to determine if spatial units could efficiently facilitate this process. 

 

 
Figure 4.2 Flow Free 
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4.3 Conclusions 
 

We conclude that deep neural networks, specifically CNNs, can learn the representation of 

a virtual environment. Similar to biological organisms, our CNN model was able to learn 

the spatial representation of the environment using spatially modulated neuron-like 

activations, i.e. border units and novel ‘corner’ units. In particular, our model emphasized 

the importance of borders and corners when judging a spatial environment, which hints at 

the underlying importance of these spatial representations for both navigating artificial 

agents and biological systems.   
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Appendices 
 

This section will give additional information from the previous sections and provide further 

elaboration to novice computational neuroscientists like me for mutual learning. 

 

Our CNNs Model Codes 
 

This is a sample of our final model script. As additional angles output is still under testing, 

the script is not yet to be revealed to the public. 
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How the Inner Activations are Calculated 
 

Adapted from our full codes, the following code shows exactly how we retrieve the inner activation 

of the dense units: 
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Simple Explanation of Parameters 
 

This part briefly explain the general concept of parameters in between layers for 

understanding. 

 

Item Functionality 

Convolution Layers 

Input Input refers to the input data we feed into the model which is the 

Donderstown snapshot (1) 

Conv2D 2D convolution layer. A mathematical process that combines 2 

signals to form a 3rd signal as a feature map (filter) (1) 

Filters A concatenation of multiple kernels (2). Kernel is the weight 

data. Each filter extracts one feature 

kernel_size Kernel formed from the activation weights (weighted sum of all 

pixel values) of each neuron, the kernel_size here is in 2-

dimensions 

activation An additional step over the layer to do non-linear transformation 

to the neuron’s inputs (3). For example, we tried out with relu, 

elu, tanh, swish, mish, softmax. Please refer to the next section 

(Simple Explanation of Activation Function) for coverage of 

mechanism used in each activation. 

strides The way how the convolution works (1), such as steps 

proceeding (number of pixels shift) from left to right and top to 

bottom over the input matrix. Bigger step (>1,1) is a way of 

down-sampling 

padding Added outer boundaries to the input layer to avoid the loss of 

features post-convolution (1). The ‘same’ used in our model is 

make enough padding (empty pixels) boundaries to standardize 

the shape between the output and input 

Dropout Dropout is a regularization technique to reduce overfitting and 

improve generalization (4) 

Fully-Connected Layer (Flatten) 

Flatten The layer that connect all nodes from previous layer (1) 

Fully-Connected Layer (Classification) 

Dense Matrix vector multiplication used to change the dimensions of 

vector 

activation Similar to what mentioned above, this is an additional 

mathematical step to do data transformation. For example, we 

tried out with relu, linear and sigmoid. Please refer to the next 

section (Simple Explanation of Activation Function) for coverage 

of mechanism used in each activation. 

kernel_regularizer Input weight regularization, Wx+b: Adds the regularising term to 

the training loss to penalize on actual corresponding kernel 

weights of the layer.  

activity_regularizer Activation Regularization, y = f(Wx + b): Adds the regularising 

term to the training loss over the output vector. Used to impose 

constraints on the model and reduce overfitting 
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bias_regularizer Bias weight regularization, Wx+b: Adds the regularising term to 

the training loss to penalize on corresponding weights via bias 

vector of the weights 

Dropout (Similar to above) 

Difference 

between L1 and L2 

regularizers 

L1 regularization: Lasso Regression (Least Absolute Shrinkage 

and Selection Operator), adds “absolute value of magnitude” of 

coefficient as penalty term to the loss function. Shrinks the less 

important feature’s coefficient to zero (feature removal) (5) to 

reduce the model’s complexity (6). Large lambda leads to model 

underfitting (5) 

L2 regularization: Ridge Regression, adds “squared magnitude” 

of coefficient as penalty term to the loss function. Works to 

reduce overfitting. However, if lambda is incredibly large then it 

will add too much weight and lead to model underfitting (5) 

Fully-Connected Layer (Output) 

Dense (Similar to above) 

activation (Similar to above). For example, linear is required for our case. 

Please refer to the next section (Simple Explanation of Activation 

Function) for coverage of mechanism used in the activation. 

 

Simple Explanation of Activation Function 
 

This section will briefly summarized the computation and general remarks of our tested 

activation functions. 

 

Activation Algorithm Remarks 

relu f(x)=max(0,x) Results become zero for 

negative input values 

(inactivated neuron) (3) 

elu f(x) = x,   x>=0 

    = a(e^x-1), x<0 

Values of  x greater than 

0 is 1, values of x<0, the 

derivative would be  

a.e^x (3) 

linear f(x)=ax Linear regression (3) 

tanh tanh(x)=2sigmoid(2x)-1 Symmetric around the 

origin with the range of 

values between -1 to 1 

(3) 

swish f(x) = x*sigmoid(x) 

f(x) = x/(1-e^-x) 

Values range from 

negative infinity to infinity 

(3) 

mish f(x) = x.tanh(softplus(x)) Work better than both 

ReLU and Swish (7) 

softmax z = np.exp(x) 

z_ = z/z.sum() 

Sum of all classes 

probability ended up equal 

to 1 (3) 
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sigmoid f(x) = 1/(1+e^-x) Sigmoid transforms the 

values between the range 

0 and 1 (3) 

 

Functions and Parameters to Train the Model 
 

.fit_generator 
 

We used .fit_generator to train our model. In contrast with .fit, .fit_generator is used in 

our model because .fit is more suitable to the model that can fit the whole training set into 

the RAM (8). Our data for the model is however too large for that. This is why we chose 

to utilize .fit_generator which makes use of the generator function to yield a dataset based 

on a specified batch size under timely manner for training, and then later performs 

backpropagation to update the model’s weights (8). To recap, we learnt that the model 

weights are updated by the end of every epoch after the model learnt the whole training 

set (9) fed until the current moment. While the function trains the data batch-by-batch, 

the generator is running with CPU in parallel to the model training with GPU for time 

efficiency (10). 

 

steps_per_epoch 
 

While the generator is expected to loop over its data indefinitely, steps_per_epoch refers 

to total number of steps (batches of samples) to yield from the generator before an epoch 

finishes (10). While it was recommended to set the steps_per_epoch as total number of 

training dataset divided by the batch size (8), so that the model learns each sample at 

most once per epoch (11), we thought 1000 is a sensible value to get a quicker overview 

of the model. 

 

callbacks 
 

Callbacks are functions that are applied at every stage of the training such as the view on 

internal states and statistics. For instance, we used CSVLogger to save our model training 

result by the end of every epoch. 

 

use_multiprocessing 
 

Lastly, use_multiprocessing=True refers to process-based threading (10) that would 

separate the memory space and is able to take advantage of multiple CPUs and cores if 

present. In other words, it helps to process and load the generator dataset in parallel. 

Although multi-CPUs chips are still uncommon, modern Intel CPUs are now equipped with 

both multiple cores and hyper-threading technology (12). Hyper-threading (logical 

processors) makes a physical CPU core appears as two logical CPU cores to the operating 

system to speed up program execution (12). Conversely, multiple cores refers to multiple 
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processing units in a single physical CPU socket unit, which is capable of running different 

processes in parallel with less latency and quicker communication (12). 

 

.get_layer and .predict 
 

For post-model training, we also used .get_layer function and .predict to manipulate with 

our model output. Get_layer helps to retrieve a layer based on either its name (unique) 

or index while .predict generates output predictions for the input samples that were 

computed in batches (10).  

 

Model Extended Tuning: Other Hyper-parameters 

Configurations 
 

Based on previous testing, we found that the model was not affected by an additional 

dropout layer after the last hidden (dense) layer. In fact, there were no significant 

differences in the model performance and activation patterns of the activation map when 

compared to the chosen model that comes without dropout after the last hidden (dense) 

layer. We also found that the utilization of L2 regularizers in the last hidden (dense)  layer 

can help drop the loss rate more quickly and smoothly, with only very slight overfitting, 

and get smoother looking activation maps representing the border-like and corner-like 

units. Similarly, there was no necessity to include dropout after the layer when applying 

L2 regularizers, as the model is capable of learning the XY position output correctly with 

or without it, and gave no differences in the training time as well. 

Both L1 and L2 regularizers showed activations beyond border and corner-alike units in 

the activation map when non-linear activations such as relu were being used. However, 

we also observed that the use of L1 regularizers tends to affect the model ability to learn 

in a way that the model became almost impossible to predict the XY position. On the other 

hand, despite L2 regularizers improving the model, we also found that the high value of 

kernel_regularizer and/or activity_regularizer affected the model’s ability to estimate the 

output, while bias_regularizer was not a sensitive factor in the model. In spite of these 

findings, we did not choose to use this extended model due to time constraint, and because 

there were a lot more tuning combinations that would be needed to try out for comparison 

and confirmation. To this end, our model still holds some level of inconclusive uncertainty 

regarding the utilization of L1 and L2 regularizers. 
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Hardware Requirements and Related Software 
 

The original hardware in the workstation included 16 GB Random Access Memory (RAM) 

and Quadro K1200 graphics processing unit (GPU) with only 512 cores, 4GB GDDR5 

memory and 80GB/s bandwidth. These are not enough to cater our needs for data 

processing and model training. Hence, we upgraded the RAM from 16 GB into 80 GB and 

purchased an additional GPU, NVIDIA GeForce GTX 1660 that comes with 1408 cores, 6GB 

GDDR5 memory and 192.1GB/s bandwidth. RAM is a primary storage which capable of 

quickly read and write data with the helps from Central Processing Unit (CPU, commonly 

known as processors) to transfer the data from and to the secondary storage, which is the 

hard disk (13). Meanwhile, GPU is mainly responsible to handle intensive graphics 

rendering tasks, taking over the heavy duty of rapid mathematical calculations from the 

CPU. Taking advantage of GPU’s capability in breaking complex problems into simple tasks 

and work them out in parallel, we used it to train our model via utilization of CUDA, while 

RAM is mainly used for data pre-processing such as the calculation of mean and standard 

deviation for normalization. To further save the GPU resources for the model, we set the 

Quadro K1200 as default GPU for handling ordinary graphical tasks such as display 

projection, while GeForce GTX 1660 is only used for model running. System error is kept 

at minimal by installing most of the needed packages in a dedicated anaconda environment. 

The final version of master programs and drivers utilized in this project are summarized 

in hardware and software specifications table below. 
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Hardware and OS Specifications 

Workstation Model Dell Precision Tower 5810 

Processors  Intel® Xeon(R) CPU E5-1620 v3 @ 3.50GHz × 8 

RAM 4 X 4GB + 4 X 16 GB 

GPU GeForce GTX 1660* , Quadro K1200 

OS Ubuntu 18.04.4 LTS (64-bit) 

Driver: Nvidia 

Nvidia’s Driver 440.64 

Application/Toolboxes: Jupyter 

jupyter-notebook 6.0.3 

Application/Toolboxes: Keras 

keras 2.2.4 

keras-applications 1.0.8 

keras-base 2.2.4 

keras-gpu 2.2.4 

keras -preprocessing 1.1.0 

Application/Toolboxes: CUDA & CuDNN 

cudatoolkit 10.0.130 

cudnn 7.6.5 

Application/Toolboxes: Tensorflow 

tensorflow 1.15.0 

tensorflow-base 1.15.0 

tensorflow-estimator 1.15.1 

tensorflow-gpu 1.15.0 

Application/Toolboxes: Conda 

conda 4.8.2 

python 3.7.4.final.0 
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